1,313 research outputs found

    The thermal decomposition of huntite and hydromagnesite —A review

    Get PDF

    The fire retardant effects of huntite in natural mixtures with hydromagnesite

    Get PDF
    The fire retardant effects of natural mixtures of huntite and hydromagnesite have been investigated. As well as being entirely natural these mixtures of minerals can be considered “greener” and more environmentally friendly, in their production methods, than alternatives such as aluminium hydroxide and magnesium hydroxide. It has been shown that the release of water and carbon dioxide from hydromagnesite helps to increase the time to ignition and peak heat release in cone calorimeter testing. Huntite has been shown to decrease the average rate of heat release and increase the strength of the residue. Electron microscopy has shown that the huntite particles maintain their platy morphology during combustion in the cone calorimeter. The morphology of these particles helps to reduce the rate of heat release by slowing the release of flammable decomposition products to the flame. The platy shape of the huntite particles increases the strength of the residue containing higher proportions of this mineral. Huntite is shown to play an active part in improving fire retardancy when used in a mixture with hydromagnesite, giving performance for typical mixtures comparable to those of aluminium hydroxide

    Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes?

    Get PDF
    The fractionation of Mg isotopes was determined during the cyanobacterial mediated precipitation of hydrous magnesium carbonate precipitation in both natural environments and in the laboratory. Natural samples were obtained from Lake Salda (SE Turkey), one of the few modern environments on the Earth's surface where hydrous Mg-carbonates are the dominant precipitating minerals. This precipitation was associated with cyanobacterial stromatolites which were abundant in this aquatic ecosystem. Mg isotope analyses were performed on samples of incoming streams, groundwaters, lake waters, stromatolites, and hydromagnesite-rich sediments. Laboratory Mg carbonate precipitation experiments were conducted in the presence of purified Synechococcus sp cyanobacteria that were isolated from the lake water and stromatolites. The hydrous magnesium carbonates nesquehonite (MgCO3·3H2O) and dypingite (Mg5(CO3)4(OH)25(H2O)) were precipitated in these batch reactor experiments from aqueous solutions containing either synthetic NaHCO3/MgCl2 mixtures or natural Lake Salda water, in the presence and absence of live photosynthesizing Synechococcus sp. Bulk precipitation rates were not to affected by the presence of bacteria when air was bubbled through the system. In the stirred non-bubbled reactors, conditions similar to natural settings, bacterial photosynthesis provoked nesquehonite precipitation, whilst no precipitation occurred in bacteria-free systems in the absence of air bubbling, despite the fluids achieving a similar or higher degree of supersaturation. The extent of Mg isotope fractionation (?26Mgsolid-solution) between the mineral and solution in the abiotic experiments was found to be identical, within uncertainty, to that measured in cyanobacteria-bearing experiments, and ranges from ?1.4 to ?0.7 ‰. This similarity refutes the use of Mg isotopes to validate microbial mediated precipitation of hydrous Mg carbonate

    Offsetting of CO₂ emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining

    Get PDF
    The hydrated Mg-carbonate mineral, hydromagnesite [Mg₅(CO₃)₄(OH)₂•4H₂O], precipitates within mine tailings at the Mount Keith Nickel Mine, Western Australia as a direct result of mining operations. We have used quantitative mineralogical data and δ¹³C, δ¹⁸O and F¹⁴C isotopic data to quantify the amount of CO₂fixation and identify carbon sources. Our radiocarbon results indicate that at least 80% of carbon stored in hydromagnesite has been captured from the modern atmosphere. Stable isotopic results indicate that dissolution of atmospheric CO₂ into mine tailings water is kinetically limited, which suggests that the current rate of carbon mineralization could be accelerated. Reactive transport modeling is used to describe the observed variation in tailings mineralogy and to estimate rates of CO₂ fixation. Based on our assessment, approximately 39,800 t/yr of atmospheric CO₂ are being trapped and stored in tailings at Mount Keith. This represents an offsetting of approximately 11% of the mine's annual greenhouse gas emissions. Thus, passive sequestration via enhanced weathering of mineral waste can capture and store a significant amount of CO₂. Recommendations are made for changes to tailings management and ore processing practices that have potential to accelerate carbonation of tailings and further reduce or completely offset the net greenhouse gas emissions at Mount Keith and many other mines

    Sequestering CO2 by Mineralization into Useful Nesquehonite-Based Products

    Get PDF
    The work described here was supported financially by GORD, the Gulf Organisation for Research and Development, based in Doha, Qatar. It forms part of the “Green Concrete” project at the University of Aberdeen.Peer reviewedPublisher PD

    Fire retardant action of mineral fillers

    Get PDF
    Endothermically decomposing mineral fillers, such as aluminium or magnesium hydroxide, magnesium carbonate, or mixed magnesium/calcium carbonates and hydroxides, such as naturally occurring mixtures of huntite and hydromagnesite are in heavy demand as sustainable, environmentally benign fire retardants. They are more difficult to deploy than the halogenated flame retardants they are replacing, as their modes of action are more complex, and are not equally effective in different polymers. In addition to their presence (at levels up to 70%), reducing the flammable content of the material, they have three quantifiable fire retardant effects: heat absorption through endothermic decomposition; increased heat capacity of the polymer residue; increased heat capacity of the gas phase through the presence of water or carbon dioxide. These three contributions have been quantified for eight of the most common fire retardant mineral fillers, and the effects on standard fire tests such as the LOI, UL 94 and cone calorimeter discussed. By quantifying these estimable contributions, more subtle effects, which they might otherwise mask, may be identified

    Spectral evidence for carbonates on Mars: Hydrous carbonates

    Get PDF
    Although many of the spectral features of the Martian samples studied are not unique mineralogical indicators, much of the current spectral data is consistent with (possibly abundant) hydrous carbonates on the surface of Mars. The absorption features in the measured samples were quite weak compared with those of anhydrous carbonates. The weak features imply that significantly more hydrous carbonates can be incorporated onto the surface before becoming spectrally evident; however, exact limits have yet to be determined. The stability of these materials in the Martian environment is not known, but their formation and occurrence in low temperature terrestrial environments makes them appealing candidates for weathering products on Mars
    corecore